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The problem of the stress-strain state in the neighbourhood of elastic inclusions (domains with different mechanical properties) which
arise, after loading, in a body made of a non-linearly elastic compressible or incompressible material, taking account of non-linear effects
due to the finiteness of the strains, can be of interest, for example, when investigating the deformation of rubber-like materials in which,
when they are stretched, there is a transition from a highly elastic state into a crystalline state.!-1° As a rule, polymers crystallize partially.
At the same time, crystalline domains originate in a material that, in a number of cases, can be considered as inclusions.!12, An inclusion
can arise in a loaded body as the result of a phase transition.3-16 such as, for example, in shape memory alloys.”'® The formation of
micropores in a certain part of a body (for example, in a pre-existing imperfection zone'?) leads to a change in the effective mechanical
properties of the material in the corresponding region which can also be considered as the formation of an inclusion.20-23

The first problems concerning inclusions in a linearly elastic medium were considered in the middle of the last century.?627 Several
non-linear effects have been investigated.2829 The problem of the phase transformation of an elastic sphere has been considered.30 A
solution has been obtained?8 in the case of small deformations, where only the material of the inclusion was assumed to be non-linearly
elastic, and the material of the remaining part of the body (the matrix) was assumed to be linearly elastic. A solution has been obtained?®
for large deformations using a special form of elastic potential for which it was found to be possible to reduce the non-linear boundary
value problem to a linear boundary value problem and to obtain an exact analytical solution. In all the above mentioned papers, with the
exception of Ref. 30, it was assumed that the inclusion existed in the body from the very outset. It is assumed below that an inclusion is
formed in a predeformed body. It is also assumed that the strains throughout the body are finite and that the matrix and inclusion materials
are non-linearly elastic. The approach employed to solve the problem, based on the use of approximate analytical methods, is applicable
for arbitrary elastic potentials in the case of both compressible and incompressible isotropic materials. In the case of small deformations,
the problems has been solved3? in a radially symmetric formulation for a body of finite dimensions (a sphere) and the boundaries of the
domain in which the properties of the material changed were determined when solving the problem using an additional condition at the
phase interface. Plane problems for infinitely extended bodies are considered below and the domain in which the properties of the material
change is assumed to be given.

1. The model of the formation of the inclusion

We shall assume that the formation of an inclusion in a body occurs “instantaneously”. The approach adopted in the theory of the
superposition of large strains?231:32 can then be used in the case of static problems. The generalized formulation of the problem of the
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formation of an inclusion based on this approach is as follows. Suppose large static strains and stresses, which we call the initial strains
and stresses, arise in a non-linearly elastic body in an initial (unstressed) state under the action of external loads. The body has transferred
into the first intermediate state. A closed surface (the future boundary of the inclusion) is then conceptually designated in this body. The
part of the stressed body bounded by the designated surface is conceptually removed from the remaining part of the body and its action on
the remaining part of the body is replaced, according to the principle of releasing from constraints, by forces distributed over this surface.
This action does not change the stress-strain state of the remaining part of the body. The cavity which has been formed by removing a part
of the body is then filled with an elastic material with different properties (the material of the inclusion). It is assumed here that forces
are applied to the boundary of the inclusion. Two versions of their application are considered. The first version is: forces are applied which
give rise to a deformation of the inclusion equal to the initial deformation of the removed part of the body (and the inclusion takes the
shape of the removed part of the body after this deformation). The second version is: the given forces are assumed to be equal to zero and
the inclusion which is inserted is at first undeformed.

The remaining part of the initial body (the matrix) and the inclusion are then “glued” while preserving the forces acting on them (the
term “gluing” is understood in the sense of satisfying boundary conditions, that is, it means that, in the case of further deformation of the
body, the displacements of the boundary points of the matrix will be equal to the displacements of the corresponding boundary points of
the inclusion). Then, at each point of the interface between the matrix and the inclusion, the sum of the forces applied to the matrix and
the forces applied to the inclusion quasi-statically (for example, isothermally) reduce to zero. This causes the onset (at least, in the matrix
in the neighbourhood of the inclusion and in the inclusion itself) of large strains and stresses superimposed on the existing strains and
stresses which are already large. The shape of the boundary between the matrix and the inclusion changes. The body (the matrix and the
inclusion) transfers into the final state.

Note that, in the case of the first version of the model of the formation of the inclusion, the stresses in the inclusion after its deformation
are determined by the overall deformations in it (these overall deformations are the superposition of the initial deformations of the part
of the body removed and the additional deformations caused by the formation of the inclusion). In this case, after removal of the loads,
the body (the matrix and the inclusion) transfers into the initial undeformed state and residual stresses do not occur. This version of the
model can clearly be used to describe phase transitions of the second kind and, also, to describe the formation in a body of a region with
randomly distributed micropores, the sizes of which are much smaller than the dimensions of this region.

In the case of the second model of the formation of an inclusion, the stresses in the inclusion after its deformation are determined by
the additional deformations in it. In this case, after the loads have been removed, the body does not revert to the initial undeformed state,
and residual strains and stresses arise in it. This version of the model can clearly be used to describe phase transitions of the first kind. In
this case, not only the elastic moduli change during a phase transition in the material but inhernt strains deformations arise which, in this
version of the model, are equal to the initial deformations.

The second version of the model is preferable to the first version for describing the mechanical behaviour of polymers during their
partial crystallization. As was mentioned above, this is associated with the fact that, during the crystallization of polymers, their elastic
moduli increase by a large factor while there is only a slight change in the deformation. If the first version of the model is used, the stresses
must simultaneously increase by a large factor. However, there is no mention in the literature23-6 that, the stresses in deformed polymers
increase significantly during their crystallization.

The model considered can easily be extended to the case of the simultaneous or sequential formation of several inclusions. Note that,
in the case of the sequential formation of closely spaced inclusions, there is a repeated superposition of large deformations.

2. Mathematical formulation of the problem

The mathematical formulation of the problem is based on the theory of the repeated superposition of large deformations in the coor-
dinates of the intermediate or final state. It is assumed that the mechanical properties of the matrix and inclusion materials are described
by constitutive relations of the Murnaghan- or Mooney-type33 and that the formation of an inclusion does not change the stresses and
strains at infinity. The mass forces are assumed to be equal to zero, the initial stresses and strains are assumed to be homogeneous, and
the matrix is assumed to be unbounded.

Suppose the subscript 0 corresponds to the initial state, superscript 1 to the intermediate state and subscript 2 corresponds to the final
state. The following notation is used:2231

u;, is a displacement vector, characterizing the transition from the preceding (n - 1)-th state into the following n-th state (u; is the initial
displacement vector and u; is the additional displacement vector);

% is a gradient;

W, p is the deformation gradient for the transition of the body from state q into state p (W is the initial deformation gradient and W,
is the additional deformation gradient).;

Anmn is the relative change in volume on transferring from the m-th into the n-th state:

0o, is the true stress tensor, describing the stresses accumulated in the body on transferring from the initial into the n-th state;

Pon is the Lagrange multiplier for the n-th state (for incompressible materials);
k
Em.n is the strain tensor in transferring from the m-th into the n-th state, referred to the basis of the k-th state;

Fm,n is the strain measure tensor on transferring from the m-th to the n-th state corresponding to the Finger measure;

E‘o,n is the generalized (overall for the n-th state) stress tensor defined in the coordinate basis of an arbitrary m-th state;
' is the boundary of the i-th contour (i=1,..., L, L is the number of inclusions) in the coordinates of the intermediate state;
Iis a second rank unit tensor;

N is the normal to the boundary of the body or to the boundary of an inclusion in the coordinates of the k-th state;

S (i=1,...L) is the region, the outer boundary of which is the contour I'D;

S is the infinite domain bounded by the contours ') (i=1,...,L).
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It is well known?23! that, before solving the problem for the final state in the coordinates of the intermediate state, it is necessary to
find the initial displacement vector u; or the initial deformation gradient Wy 1, that is, to solve the problem for the intermediate state in the
coordinates of this state. Note that, as a consequence of the homogeneity of the material of the body in the initial state, the initial strains
will be homogeneous. The problem of finding the initial strains is simple and is not considered in this paper.

We well now consider the formulation of the problem for the final state in the coordinates of the intermediate or final state. The
equilibrium equation for solving the problem in the coordinates of the intermediate state can be written in the form

| |
V-[(1+ Ag) 'Zor Wil =0 2.1)

Here,
: 1
202 =(1+ Ao,z)‘l‘;kj] 002 P2 (2.2)

When solving the problem in the coordinates of the final state, the equilibrium equation has the form
2
V-0, =0 (2.3)
For an in compressible material (a Mooney material) the condition
AO,n = 0 (24)

must be satisfied.
The constitutive relations for the initial material (the matrix material) are written in a form corresponding to the Murnaghan potential

0 0 0 u 0 )
o= AM(Eg 2 : DI+ 2GyE ,+3C(Ey , : )T+
y 0 2 u. 0 0 u. 9 5
+Cy (Eo p: DI+ 2C, (E ;1 DE ; +3C5(E ) (2.5)
or the Mooney potential

002 = %M{(l +BmFo 2+ (1=Bp)[(Fp, : DFy, — F02,2]}‘ Dol

(2.6)
The constitutive relations for an inclusion are written in a similar form.
In the case of the first version of the model of an inclusion, the constitutive relations have the form
0 0 0 2 0 )
20’2 = }\’B(EO,Z . I)l + 2GBEO,2 + 3C3(E0’2 . I) I +
g 0 2 5 0 0 3.0

+Cy(Eg, : DI +2C((E, ,: DE , + 3C5(E, ,) (2.7)

for the Murnaghan potential or
G 2
Co2 = 7”'{(1 +BpFo +(1=Bp) (Ko, : DFy, —Fyol} = pyol (28)

for the Mooney potential. Henceforth, the index M refers to the matrix and the index B refers to the inclusion. The constants
A, Gu, CM, Y, CM | By, characterize the elastic properties of the matrix material (\y and Gy are Lamé constants)and A, Gg, C5, C8, CE, B,
determine the elastic properties of the inclusion material.

In the case of the second version of the model for the formation of an inclusion (when, at the instant of “insertion”, the inclusion is not
deformed), the constitutive relations have the form

0 0 0 PO 2
Z02=Ag(E,: DI+2G4E, ,+3C5(E, ,: )T+
5 0 2 50 0 5.0
+Cy(E,,: DI+2C,(E, ,: DE, , + 3C5(E, ;) 2.9)
in the case of the Murnaghan potential or

002 = %{(1 +BpF2+(1-Bpl(Fs: DF , —Fll - pol

(2.10)
in the case of the Mooney potential. ‘
Relations (2.5) or (2.6) hold in the domain S(©) and relations (2.7)-(2.10) hold in the domains S() (i=1,.. .,L). In these relations,
0 1
Sk _
Xo02 = ‘I’o,ll - X0, ‘I’o,l[ (2.11)

and, consequently,
1 0
*
o2 = Yo, - 20 Wy, (2.12)
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The kinematic relations can be written in the following form:22

0 1 ! 1 %
E, = 5(‘110.2'\{’3:.2—1)» E,= E(\Pl.2' 12— 1)

(2.13)
(1+Agp) =detWp, (1+A;y)=det¥;, ¥o,=T P2 (2.15)
Fo, =W Wo» Fio=¥, ¥, (2.14)
(1+Agp) =detWp, (1+Ay)=det¥; 5 ¥oo=To ¥i2 (2.16)
1
¥, =1+Vu, (2.16)
N
Yo = [I - Vuzj
(2.17)

Formula (2.16) is used when solving the problem in the coordinates of the intermediate state, and formula (2.17) when solving the
problem in the coordinates of the final state.
The boundary conditions include the condition at infinity
_ o0
o), =0 (2.18)
(o is the given tensor of the true stresses at infinity) and, also, conditions for the continuity of the displacement vector u, and the normal

1 )
stress vector Ny - ¥g,2 - W12 at the boundaries of the inclusions, that is, on the contours '), Denoting the increment in a certain quantity
on passing across an interface ') by [[-lrw, these conditions can be written in the following form:

“u2”1"“’ = 0, i= ],..., L (2.]9)

1
Nl .l:|:20,2.lpl'2jﬂ =0, i =1,...,L
r® (2.20)

Condition (2.20) can be derived from the corresponding condition in the coordinates of the final state

Ny -llooodlw =0, i=1,..,L (2.21)

The contour into which the boundary I'D transfers when the body charges from the intermediate state into the final state is denoted

by .
To derive formula (2.20), we transform relation (2.21). We first multiply it by the area of an elementary small area in the final state dO,.

[[N2dO; - ool =0 (2.22)

(the superscript i is omitted for brevity).

1
We now express the tensor o in terms of 3 » using equality (2.2) and substitute it into relation (2.22). We also use the identity?>
*—|
NydO, = (1+ A )N dO, - ¥y, (2.23)
which is the generalization of the well known formula33
NdO = (1+A)¥ ™" -ndo = (1+ A)n- ¥ 'do

to the case of the superposition of large deformations, where N and n are the vectors of the unit normals to the orientated small area in the
deformed and undeformed states respectively, dO and do are the areas of this small area in the corresponding states, W is the deformation
gradient and A is the relative change in volume.

As a result of the substitutions, formula (2.22) can be rewritten in the intermediate state coordinates in the form

[[(L+ A )(1+ Ag ) 'NdO, - B, g, - ) 5] = 0 (2.24)
whence
N0 - [[(1+Ag) 'S, - By A =0 (2.25)

We will now take account of the fact that, before the change in the properties of the material, the strains in the body were continuous and
it is therefore possible to take the scalar (1+ Ag1)~! out of the brackets. Dividing equality (2.25) by this quantity and dO;, we finally obtain
the boundary condition in the form of (2.20). Note that this form of writing the boundary condition is a generalization to the case of the
superposition of the residual strains of the boundary condition in the initial state coordinates (for example, see Refs. 14 and 34).
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3. Solution of the problem using approximate analytical methods

In the case of plane deformation and a circular inclusion (at the instant of formation or in the final state), the problem can be solved
using approximate analytical methods. The small-parameter method (the method of successive approximations)3!33:3> and the modified
Newton-Kantorovich method3136 are used to solve it. The essence of the small parameter method, as applied to the problems considered
here, is as follows. A small parameter is written in the form

q= maxkc"")’,jj/GM
ij (3.1)
and a series expansion in this parameter is written for all the quantities occurring in the formulation of the problem. For example, in the
case of the displacement vector u,, this expansion can be written in the form
u =u +ud ., ) ~ g (3.2)
After substituting similar expansions into all the equations appearing in the formulation of the problem, the solution of the initial non-linear
problem reduces to the successive solution of linearized problems.

The small parameter method is applicable in the case when the strains are finite but small compared with unity (although, for certain
boundary value problems and classes of materials, this method converges over a wider range of strains3?). It has been noted33 that this
method, when terms of the second order with respect to the small parameter are retained can be used to take account of the quantitative
deviations from the predictions of the linear theory.

In the case of several inclusions, the linearized problem for each approximation is solved using an iterative algorithm.31-38 At each step
in the iterative algorithm, the problem for one inclusion is solved with boundary conditions specified in a special way. The method of
solving this problem using complex Kolosov-Muskhelishvili potentials?73? is described in detail in the following Section. A specialized
system of numerical-analytical computations using a computer3! is employed in the calculations. The first two approximations (linear and
quadratic) were calculated by the small parameter method. Five approximations for problems involving one inclusion were found by the
Newton-Kantorovich method.

4. Analytical solution of the linearized problem for one inclusion

The linearized problem of a circular elastic inclusion in an infinitely extended elastic body (when there are no mass forces)*? is considered
for the case of plane deformation. The formulation of the problem includes the equilibrium equations for the matrix and the inclusion

v.e" =0, v.6¥=0 (4.1)

the boundary conditions
M B M B, -

N-o |r=N'0'|r+Q, u |r=u|]-+u (4.2)

the condition at infinity
M

¢, =0 (4.3)
the constitutive relations for the matrix and the inclusion

o =y DI+2Ge™. o = hpe®  DI+2G,e" (4.4)
and the kinematic relations for the matrix and the inclusion

e = l(VuM +u'v). ¥ = l(VuB +u’v)

2 2 (4.5)
Here, uM and u® are the displacement vectors in the matrix and in the inclusion respectively (or the increments in the displacement
vectors), eM and &8 are the tensors for small strains in the matrix and in the inclusion (or increments in the strain tensors), oM and o® are
the linear elasticity stress tensors in the matrix and in the inclusion (or increments in the stress tensor), I" is the boundary of the inclusion,
N is the vector of the normal to this boundary, and Q and ii are the residual vectors with respect to the normal stresses and with respect
to the displacements on the boundary, respectively.

This problem arises, for example, when the small parameter method is used to solve a non-linear elasticity problem at the stage of
finding the solution of the homogeneous equation satisfying the boundary conditions. The problem that arises at each step in the Schwartz
method when calculating of several interacting inclusions in an infinitely extended body, has the same form.

We note that a more general problem, in which the condition at infinity (4.3) is replaced by the condition o™|,, = 5> can be reduced to
the problem formulated above by representing the stress field in the form of the sum of two fields: a field of constant stresses equal to o>
and a field of additional stresses satisfying conditions (4.3).

Complex Kolosov-Muskhelishvili potentials?’ can be used to solve the plane problem. The complex potentials for the matrix are
denoted by @p(z) and Jiy(z) and the complex potentials for the inclusion by ¢g(z) and {iy(z). The components of the stress tensor o and
the displacement vector ué (£ =M for the matrix and & =B for the inclusion) are related to the complex potentials by the equations

up + ius = 2—lG—|:83g(Pg(Z) - 20x(2) - \ue,(z)}, E=M,B
3
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o% + 0% = 4RQUR), O — of +2ict, = 2[z<p'g<z> + w;(z)} w

where

& = Ae + 3Gy
Ay + G

Henceforth, z denotes an arbitrary point in the complex plane. We shall denote an arbitrary point of the contour I" (the boundary of the

inclusion) by t=e®, the finite region bounded by the contour I" (the domain of the inclusion) by S* and the infinite region bounded by this

contour (the domain of the matrix) by S—.

We shall further assume that the boundary of the inclusion is a unit circle with centre at the origin of coordinates. The solution for a
circular inclusion of arbitrary radius with an arbitrary centre can be obtained by the same method as above but the calculations are more
unwieldy.

Taking account of relations (4.7), the first of boundary conditions (4.2) can be written, after integration along the contour, in the form?2’

=%Ao+wuo+waﬂ +g(1)

r (4.8)

hMm+wym+me}
I

where

) t

ds

g(n) = [qda= [q(s)=

K
6o fy

Here ty = ei% and s =ei®are certain points of the contour I and q = Q; +iQ, is the complex representation of the residual vector with respect

to the normal stresses Q.
When account is taken of relations (4.6), the second boundary condition of (4.2) can be written in the form

L[wwmz)—t@m-wmn} twh(r)—th)}
I

+h(t
. )

r (4.9)

1
- 265[&”“’ ”"’}

Here h(t) = ii; + il is the complex representation of the residual vector with respect to the displacements .
We shall assume that the functions g(t) and h(t) can be expanded in series

0

gn= Y ga*, hty=Y nt*
k=-0 k=~ (4.10)

The complex potentials @p(z) and s (z) are analytic functions in the infinite domain |z| > 1,27 and the expansions in series

ou@ = Yaz ™, yu@) = Y™
k=0

k=0 (4.11)

hold for them.
The complex potentials ¢p(z) and {sp(z) are analytic functions within the unit circle (when |z| < 1) and can be represented in the form of
expansions in non-negative powers of z

¢p(2) = chlk, v p(z) = dezk
k=0

k=0 (4.12)
To find the solution, we will use Cauchy-type integrals. We represent the solution in the form
Pu(2) = ay+ Ou(2), W) = by + bz +y(2)
Pp(2) = o+ T+ 05(2), V) =dy+ Yz (4.13)
The functions g(t) and h(t) are represented in the form
g() = go+git +&5(1), h(1) = hy+ hit + k(1) (4.14)

The functions ¢y,(2), Yy (2), ¢5(2), Ui5(2) can be determined from the boundary conditions

|}M»+m?m+w2m}=fﬁm+w§m+w?{
r

1 % * %
=— H—top(t) -
A 2G8|:33B(PB( )=t (t)—yp(t)

+g%(
r

1 % % %
— 1) — 19 4(t) =y (¢
2GM[33M<PM( ) =10 p(1) — W pr( )}

+ ¥
r (4.15)
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We introduce the notation

I(z) = g (1)dt L(z) = L h*(f)dt

L)

2nid -z 2mid -7
r r
~ *(Hdt 1 rh*(t)dt
I = giL I = — 4 A
(@) 2TEI§ 2(2) 2ni§ t—z
r

Initially, suppose z € S~. Using the properties of Cauchy-type integrals,?” the representations of the functions @p(z), Uim(2), @5(2), Up(2)
in the form of series and also taking account of the fact that t=t~1 on the contour, Egs. (4.15) can be rewritten in the form

* o x —
—om(z) = —[z%(z) +yp(2) - 202} +1i(2) - M y(2) = [Z(py(z) + ) - 2C2} +1x2)
G 2Gy (4.16)
Here, @}/(z) and yi3(z) are functions which are obtained by replacing Z by 1/z in the expressions ¢ (z) and {s3(z) respectively.
Eliminating the expression in square brackets from the system of equations (4.16), we can obtain
-1
k GB
om(z) =~ 1+ =2y | [1(2)+2GpIx2)]
Gy (4.17)
Now, suppose z e S*. In this case, using the properties of Cauchy-type integrals, Eqs. (4.15) can be reduced to the form
Tk s 1 [ w o w
wWu(2) + V() = @p(2) + [1(2) - ——[zqw(z) + \VM(Z):| = —cpg(z) +I(2)
26y 2Gp (4.18)
Here, ¢%/(z) and s,(2) are functions which are obtained by replacing z by 1/z in the expressions z¢}/(z) and Uiy (2) respectively.
Eliminating the expression zey(z) + Yy (2) from system of equations (4.18), we find
* GM B
0p(2) =—| 1+ L&y | [1(2)+2Gy1(2)]
Gp (4.19)

In order to find the functions {sy,(z) and Us5(z), we apply the operation of complex conjugation to the boundary conditions (4.15) and
evaluate the Cauchy-type integrals of the resulting equations. In the case when z< S—, we arrive at the equations

—lcp";;(o —WiR) = 0% + T@)

! [ P2+ \VM(Z)}__Q(P;X;(Z)"' Iz2)
26,

2Gy (4.20)
Eliminating the function qTE’(Z) from the system of equations (4.20), we can obtain
: G
Y2 = —lwi}'(z)—(l +—2 ) {1 (2) - [2(1)}
z Gyep @p (4.21)
Finally, when z € S*, using a similar approach we find
-1
Gy 7 2G
W) = ——%(Z) + [l + j {11(1) - =M )}
Gy (4.22)

Formulae (4.21) and (4.22) enable us to find the functions {5;(z) and {sy;(z) when the functions ¢;,(2) and @j(2) are already known.

In order to determine the coefficients ag, bg, o, do, b1 and c; required to find the functions ¢p(2), Ym(z), @p(2), Yp(z) we substitute
expansions (4.10)—(4.12) into boundary conditions (4.8) and (4.9), taking account of the equality f = t~! and consider the terms containing
t9 and t! in the resulting series. As a result, we obtain the following equations

by=c,+7 +g, LE] :L(&:Bcl +o)+h
26, . (4.23)

ay+ by = ¢y + 20, + dy + g —1—($M00 bl)— (ﬁyco 26, —dy) + hy
26y (4.24)

Simultaneous solution of Egs. (4.23) enables us to determine the coefficients by and c; uniquely. The coefficients ag, bg, cg and dg are
determined from the solution of system (4.24). Any two of them can be specified arbitrarily. For example, one can put ag, by =0, and the
coefficients cg and dy are then uniquely defined. A change in the values of the coefficients ag and by corresponds to rigid translation of the
whole body. Note that it is first necessary to find the coefficient ¢ in order to solve system (4.24). It can be found after the function ¢}(2)
has been determined.
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The approach described can also be used when the matrix and inclusion materials are incompressible. In this case, it is necessary to put
&y=1and ®p=1.

5. Some results of the calculations

We will now present the results of some model problems on the formation of inclusions in a preloaded non-linearly elastic body. All cal-
culations were carried out using the software included in the structure of the authors’ suite of programs “Superposition (Nalozhenie)” 3123
In Figs. 1-3 and 7 presented below, the solid curve corresponds to the solution obtained within the limits of the linear theory (the zeroth
approximation) and the dashed curve corresponds to the solution obtained taking account of non-linear effects.
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Problem 1. The simultaneous formation of two identical circular (at the instant of formation) inclusions of radius R. The matrix and
inclusion materials are incompressible (of the Mooney type), Gg/Gp =5, Bg =P = 1. It is assumed that the stresses in the inclusion depend
on the overall strains (that is, the first version of the model for the formation of an inclusion is used). The initial load is a uniaxial extension
along the x; axis: (09,1)11=(00,1)2=0, (00 1)22 =p. The centre of the first inclusion is located at the origin of coordinates.

The dependence of the overall true stresses (02 )22 in the matrix at point A with the coordinates x; =0, x =R on the distance d between
the centres of the inclusions (given at the instant of their formation) for the case when these centres are located on the x, axis is shown in
Fig. 1, a: p/Gy=1.

The dependence of the overall true stresses (0 2)22 in the matrix at the same point on the distance d; between the centres of the
inclusions in the direction of the x; axis, for the case when the distance between these centres in the direction of the x, axis is fixed
(d2/R=2.2), that is, the centre of the second inclusion “moves” parallel to the x; axis; p/Gy = 1.5 is presented in Fig. 2.

Problem 2. The difference from Problem 1 lies solely in the fact that the stresses in the inclusion depend on the additional strains (the
second version of the model for the formation of an inclusion is used).

The dependence analogous to that presented in Fig. 1, other conditions being equal, is shown for this case in Fig. 1, b. Comparing the
results presented in Figs. 1, a and b, it can be seen that the stresses at one and the same point, when the different versions of the model for
the formation of an inclusion are used, not only differ considerably in their absolute magnitude but also have different signs.

The dependence of the overall true stresses (0 2)2 in the matrix at a point A with the coordinates x; =R, x, =0 on the distances d
between the centres of the inclusions (given at the instant of their formation) is shown in Fig. 3 for the case when these centres are located
on the x; axis: p/Gy=1.5.

Problem 3. The formation of a circular (in the final state) inclusion of radius R. The matrix and inclusion materials are incompressible (of
the Mooney type), Gg/Gy = 2, B = Bm = 1. The initial load is a uniaxial extension along the x, axis: (091 )11 =(00,1 )12 =0,(00.1 )22 =p. The centre
of the inclusion is located at the origin of coordinates. The calculation was performed using two methods: the small-parameter method
(the first two approximations were found) and a modified Newton-Kantorovich (NK) method3! (five approximations were calculated).
The dependence of the stress concentration (0 ),2/p at the centre of the inclusion on the magnitude p of the initial load is shown in Fig. 4.
The horizontal line corresponds to the solution obtained using of the linear theory of elasticity. The line marked with the small open circles
corresponds to the solution obtained by the small-parameter method. The dashed line, the dotted line and the dot-dash line as well as
the line marked by the small solid points correspond to the different approximations of the NK method. The numbers 2 - 5 indicate the
number of the approximation.

Itis of interest to investigate the following questions: 1) how large is the difference between the results obtained by the small-parameter
method and the NK method?, 2) does the difference between two successive approximations of the NK method decrease as in the number
of approximations increases?, 3) what is the correction when account is taken of non-linear effects in the small-parameter method? The
results of a comparison of the solutions of this problem, obtained by the small-parameter method and the NK method, are shown in Fig. 5 for
a different number of approximation’s. The comparison was carried out for the stress components (g ),2. The following notation is used

sp l sp )
(50,2),, — (50,2, < (50,05, — (60,2),,

&g, = max 5 =ma
p sp ’ ()
(00,25, (00,25,
(k—1) (k)
By = max‘(GO’Z)” ~ (0l 4 o35
(k) b b
(60,2,

The superscript (k) indicates the approximation number for to the NK method, the superscript sp corresponds to the first approximation of
the small-parameter method and the superscript 1 corresponds to the linear solution. In all cases, the maximum is determined in the interval

0 <x; <2Rofthe x; axis (thatis, when x; =0). The graphs of the quantities 8p, 9, 8,, 33, 85 against the magnitude p of the initial load are given.
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The stress distribution (0 2),2 along the x, axis for the problem considered when p/Gy = 1.5 is shown in Fig. 6. The curve marked with
the open circles corresponds to the solution obtained by the small-parameter method. The curves with the numbers 1 - 5 correspond to
the different approximations of the NK method. The numbers 1 - 5 for these curves indicate the number of the approximation (note that
the first approximation corresponds to the linear solution).

The data presented in Figs. 4 and 5 show that, when —1.2p</G); < 1.4, there is only a small difference between the fourth and fifth
approximations of the NK method. The closeness of these approximations is also seen in Fig. 6. The difference between the results of the
fourth and fifth approximations does not exceed 1%, which obviously enables us to conclude that the method converges over the above
mentioned range of loads in the case of the version of the formulation of the problem considered for the values of the material constants
given above. Note that, in the case of the results presented in Figs. 4 and 5, the difference between the solution obtained by the small-
parameter method and the fifth approximation of the NK method does not exceed 2% and, in the case of the results presented in Fig. 6,
this difference does not exceed 3%. At the same time, the correction when account is taken of non-linear effects in the small-parameter
method reaches a value of 11%. We also note that, when p/Gy; = 1.5, the relative elongation in the direction of the x, axis after the initial
deformation A\, ~ 1.41. Hence, the deformations are not small in this case.

In the case of the problem of the formation of a hole, an approach to the analysis of the error in the small-parameter method and the
NK method, is similar to what has been described, has been presented earlier.31:4!

Problem 4. The formation of a circular domain with randomly distributed micropores in a body, the dimensions of which are small
compared with its radius R. The properties of the material within this domain are described by effective constitutive relations constructed
using the technique proposed earlier.222342:43 When performing the calculations, this domain is considered as a homogeneous inclusion, the

6,/Gy

1.75

1.65

1.55
0 i 2 x,/R

Fig. 6.
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elastic moduli of which depend on the coefficient of porosity Kp. The first version of the model for the formation of an inclusion is used. The
properties of the initial material are described by constitutive relations of the Murnaghan type with the following values of the constants:*

AJG=2.1, C3/G=-0.07, C,)G=-0.38, Cs/G =0.34

The initial load is a uniaxial extension in the direction of the x; axis: p/Gy =0.5.

The dependence of the overall true stresses (02 )22 in the matrix at a point A with the coordinates x; =R, x, =0 on the coefficient of
porosity Kj is shown in Fig. 7. It is interesting to note that, in the case of the solution obtained using of the linear theory, this dependence
is linear.

The stress distribution (0 ), along the x4 axis for the case when Kp = 0.3, obtained using linear theory (curve 1) and the small-parameter
method (the curve sp) is shown in Fig. 8. Results of the solution of the same problem obtained by a finite element method (FEM),25:45:46.47:48
based on the Bubnov method® (curve fem), are shown for comparison. A detailed investigation of the FEM, as applied to the problems
considered here, is beyond the scope of this paper. We note that, when the FEM was used, the system of non-linear algebraic equations
was solved by the unmodified NK method, that is, the matrix of the system of linear algebraic equations at each step in the NK method
was constructed taking account of the solutions obtained in the preceding step. It is clear that there is a small difference between the finite
element solution and the solution obtained by the small parameter method.
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